کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6928727 1449344 2018 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Reconstructed discontinuous Galerkin methods for linear advection-diffusion equations based on first-order hyperbolic system
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Reconstructed discontinuous Galerkin methods for linear advection-diffusion equations based on first-order hyperbolic system
چکیده انگلیسی
Newly developed reconstructed Discontinuous Galerkin (rDG) methods are presented for solving linear advection-diffusion equations on hybrid unstructured grids based on a first-order hyperbolic system (FOHS) formulation. Benefiting from both FOHS and rDG methods, the developed hyperbolic rDG methods are reliable, accurate, efficient, and robust, achieving higher orders of accuracy than conventional DG methods for the same number of degrees-of-freedom. Superior accuracy is achieved by reconstruction of higher-order terms in the solution polynomial via gradient variables introduced to form a hyperbolic diffusion system and least-squares/variational reconstruction. Unsteady capability is demonstrated by an L-stable implicit time-integration scheme. A number of advection-diffusion test cases with a wide range of Reynolds numbers, including boundary layer type problems and unsteady cases, are presented to assess accuracy and performance of the newly developed hyperbolic rDG methods. Numerical experiments demonstrate that the hyperbolic rDG methods are able to achieve the designed optimal order of accuracy for both solutions and their derivatives on regular, irregular, and heterogeneous grids, indicating that the developed hyperbolic rDG methods provide an attractive and probably an even superior alternative for solving the linear advection-diffusion equations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 369, 15 September 2018, Pages 103-124
نویسندگان
, , , ,