کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6928861 1449348 2018 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Minimum Sobolev norm interpolation of scattered derivative data
ترجمه فارسی عنوان
حداقل تداخل ثبات سوبولف داده های مشتق شده پراکنده
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
We study the problem of reconstructing a function on a manifold satisfying some mild conditions, given data of the values and some derivatives of the function at arbitrary points on the manifold. While the problem of finding a polynomial of two variables with total degree ≤n given the values of the polynomial and some of its derivatives at exactly the same number of points as the dimension of the polynomial space is sometimes impossible, we show that such a problem always has a solution in a very general situation if the degree of the polynomials is sufficiently large. We give estimates on how large the degree should be, and give explicit constructions for such a polynomial even in a far more general case. As the number of sampling points at which the data is available increases, our polynomials converge to the target function on the set where the sampling points are dense. Numerical examples in single and double precision show that this method is stable, efficient, and of high-order.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 365, 15 July 2018, Pages 149-172
نویسندگان
, , ,