کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6928864 | 1449348 | 2018 | 33 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An adaptive, implicit, conservative, 1D-2V multi-species Vlasov-Fokker-Planck multi-scale solver in planar geometry
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider a 1D-2V Vlasov-Fokker-Planck multi-species ionic description coupled to fluid electrons. We address temporal stiffness with implicit time stepping, suitably preconditioned. To address temperature disparity in time and space, we extend the conservative adaptive velocity-space discretization scheme proposed in [Taitano et al., J. Comput. Phys., 318, 391-420, (2016)] to a spatially inhomogeneous system. In this approach, we normalize the velocity-space coordinate to a temporally and spatially varying local characteristic speed per species. We explicitly consider the resulting inertial terms in the Vlasov equation, and derive a discrete formulation that conserves mass, momentum, and energy up to a prescribed nonlinear tolerance upon convergence. Our conservation strategy employs nonlinear constraints to enforce these properties discretely for both the Vlasov operator and the Fokker-Planck collision operator. Numerical examples of varying degrees of complexity, including shock-wave propagation, demonstrate the favorable efficiency and accuracy properties of the scheme.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 365, 15 July 2018, Pages 173-205
Journal: Journal of Computational Physics - Volume 365, 15 July 2018, Pages 173-205
نویسندگان
W.T. Taitano, L. Chacón, A.N. Simakov,