کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6928873 | 1449348 | 2018 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A method of boundary equations for unsteady hyperbolic problems in 3D
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider interior and exterior initial boundary value problems for the three-dimensional wave (d'Alembert) equation. First, we reduce a given problem to an equivalent operator equation with respect to unknown sources defined only at the boundary of the original domain. In doing so, the Huygens' principle enables us to obtain the operator equation in a form that involves only finite and non-increasing pre-history of the solution in time. Next, we discretize the resulting boundary equation and solve it efficiently by the method of difference potentials (MDP). The overall numerical algorithm handles boundaries of general shape using regular structured grids with no deterioration of accuracy. For long simulation times it offers sub-linear complexity with respect to the grid dimension, i.e., is asymptotically cheaper than the cost of a typical explicit scheme. In addition, our algorithm allows one to share the computational cost between multiple similar problems. On multi-processor (multi-core) platforms, it benefits from what can be considered an effective parallelization in time.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 365, 15 July 2018, Pages 294-323
Journal: Journal of Computational Physics - Volume 365, 15 July 2018, Pages 294-323
نویسندگان
S. Petropavlovsky, S. Tsynkov, E. Turkel,