کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6929486 | 867524 | 2016 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The construction of arbitrary order ERKN methods based on group theory for solving oscillatory Hamiltonian systems with applications
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In general, extended Runge-Kutta-Nyström (ERKN) methods are more effective than traditional Runge-Kutta-Nyström (RKN) methods in dealing with oscillatory Hamiltonian systems. However, the theoretical analysis for ERKN methods, such as the order conditions, the symplectic conditions and the symmetric conditions, becomes much more complicated than that for RKN methods. Therefore, it is a bottleneck to construct high-order ERKN methods efficiently. In this paper, we first establish the ERKN group Ω for ERKN methods and the RKN group G for RKN methods, respectively. We then rigorously show that ERKN methods are a natural extension of RKN methods, that is, there exists an epimorphism η of the ERKN group Ω onto the RKN group G. This epimorphism gives a global insight into the structure of the ERKN group by the analysis of its kernel and the corresponding RKN group G. Meanwhile, we establish a particular mapping Ï of G into Ω so that each image element is an ideal representative element of the congruence class in Ω. Furthermore, an elementary theoretical analysis shows that this map Ï can preserve many structure-preserving properties, such as the order, the symmetry and the symplecticity. From the epimorphism η together with its section Ï, we may gain knowledge about the structure of the ERKN group Ω via the RKN group G. In light of the theoretical analysis of this paper, we obtain high-order structure-preserving ERKN methods in an effective way for solving oscillatory Hamiltonian systems. Numerical experiments are carried out and the results are very promising, which strongly support our theoretical analysis presented in this paper.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 323, 15 October 2016, Pages 171-190
Journal: Journal of Computational Physics - Volume 323, 15 October 2016, Pages 171-190
نویسندگان
Lijie Mei, Xinyuan Wu,