کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6929577 867528 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Splitting K-symplectic methods for non-canonical separable Hamiltonian problems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Splitting K-symplectic methods for non-canonical separable Hamiltonian problems
چکیده انگلیسی
Non-canonical Hamiltonian systems have K-symplectic structures which are preserved by K-symplectic numerical integrators. There is no universal method to construct K-symplectic integrators for arbitrary non-canonical Hamiltonian systems. However, in many cases of interest, by using splitting, we can construct explicit K-symplectic methods for separable non-canonical systems. In this paper, we identify situations where splitting K-symplectic methods can be constructed. Comparative numerical experiments in three non-canonical Hamiltonian problems show that symmetric/non-symmetric splitting K-symplectic methods applied to the non-canonical systems are more efficient than the same-order Gauss' methods/non-symmetric symplectic methods applied to the corresponding canonicalized systems; for the non-canonical Lotka-Volterra model, the splitting algorithms behave better in efficiency and energy conservation than the K-symplectic method we construct via generating function technique. In our numerical experiments, the favorable energy conservation property of the splitting K-symplectic methods is apparent.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 322, 1 October 2016, Pages 387-399
نویسندگان
, , , , ,