کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6929577 | 867528 | 2016 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Splitting K-symplectic methods for non-canonical separable Hamiltonian problems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Non-canonical Hamiltonian systems have K-symplectic structures which are preserved by K-symplectic numerical integrators. There is no universal method to construct K-symplectic integrators for arbitrary non-canonical Hamiltonian systems. However, in many cases of interest, by using splitting, we can construct explicit K-symplectic methods for separable non-canonical systems. In this paper, we identify situations where splitting K-symplectic methods can be constructed. Comparative numerical experiments in three non-canonical Hamiltonian problems show that symmetric/non-symmetric splitting K-symplectic methods applied to the non-canonical systems are more efficient than the same-order Gauss' methods/non-symmetric symplectic methods applied to the corresponding canonicalized systems; for the non-canonical Lotka-Volterra model, the splitting algorithms behave better in efficiency and energy conservation than the K-symplectic method we construct via generating function technique. In our numerical experiments, the favorable energy conservation property of the splitting K-symplectic methods is apparent.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 322, 1 October 2016, Pages 387-399
Journal: Journal of Computational Physics - Volume 322, 1 October 2016, Pages 387-399
نویسندگان
Beibei Zhu, Ruili Zhang, Yifa Tang, Xiongbiao Tu, Yue Zhao,