کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6929812 867531 2016 37 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient high-order discontinuous Galerkin schemes with first-order hyperbolic advection-diffusion system approach
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Efficient high-order discontinuous Galerkin schemes with first-order hyperbolic advection-diffusion system approach
چکیده انگلیسی
We propose arbitrary high-order discontinuous Galerkin (DG) schemes that are designed based on a first-order hyperbolic advection-diffusion formulation of the target governing equations. We present, in details, the efficient construction of the proposed high-order schemes (called DG-H), and show that these schemes have the same number of global degrees-of-freedom as comparable conventional high-order DG schemes, produce the same or higher order of accuracy solutions and solution gradients, are exact for exact polynomial functions, and do not need a second-derivative diffusion operator. We demonstrate that the constructed high-order schemes give excellent quality solution and solution gradients on irregular triangular elements. We also construct a Weighted Essentially Non-Oscillatory (WENO) limiter for the proposed DG-H schemes and apply it to discontinuous problems. We also make some accuracy comparisons with conventional DG and interior penalty schemes. A relative qualitative cost analysis is also reported, which indicates that the high-order schemes produce orders of magnitude more accurate results than the low-order schemes for a given CPU time. Furthermore, we show that the proposed DG-H schemes are nearly as efficient as the DG and Interior-Penalty (IP) schemes as these schemes produce results that are relatively at the same error level for approximately a similar CPU time.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 321, 15 September 2016, Pages 729-754
نویسندگان
, ,