کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6930056 867658 2016 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Tensor train versus Monte Carlo for the multicomponent Smoluchowski coagulation equation
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Tensor train versus Monte Carlo for the multicomponent Smoluchowski coagulation equation
چکیده انگلیسی
In this paper we present a novel numerical algorithm for the space-homogeneous multicomponent (multidimensional) Smoluchowski coagulation equation, the number of components is considered as dimensionality. The new methodology is based on the classical finite-difference predictor-corrector scheme. In a straightforward implementation of this scheme, however, one would have to compute and store prohibitively many values of the grid function at the nodes of a multidimensional grid. We propose to use special low-parametric representations for the grid functions and as well for the coagulation kernel. The corresponding multidimensional arrays are approximated by low-rank tensor-train decompositions reducing them to combinations of small low-dimensional arrays, eventually to matrices for which we can use fast algorithms of linear algebra. Instead of O(N2d) operations in the classical scheme, we propose a new method that requires only O(d2Nlog⁡N) operations, where N is the number of nodes per axis in the space grid and d is the number of components. In this work we accelerate the predictor-corrector time-scheme and use the trapezoidal rule for the computation of multidimensional integral operators. Thus, the accuracy of the new method is O(h2+τ2), where h is the space grid step and τ is the time step.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 316, 1 July 2016, Pages 164-179
نویسندگان
, , , ,