کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6930060 867658 2016 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A hybrid formulation for the numerical simulation of condensed phase explosives
ترجمه فارسی عنوان
فرمول ترکیبی برای شبیه سازی عددی مواد منفجره فاز
کلمات کلیدی
مواد منفجره فشرده، سقوط ناپایدار، محدود کردن نرخ چوب،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
In this article we present a new formulation and an associated numerical algorithm, for the simulation of combustion and transition to detonation of condensed-phase commercial- and military-grade explosives, which are confined by (or in general interacting with one or more) compliant inert materials. Examples include confined rate-stick problems and interaction of shock waves with gas cavities or solid particles in explosives. This formulation is based on an augmented Euler approach to account for the mixture of the explosive and its products, and a multi-phase diffuse interface approach to solve for the immiscible interaction between the mixture and the inert materials, so it is in essence a hybrid (augmented Euler and multi-phase) model. As such, it has many of the desirable features of the two approaches and, critically for our applications of interest, it provides the accurate recovery of temperature fields across all components. Moreover, it conveys a lot more physical information than augmented Euler, without the complexity of full multi-phase Baer-Nunziato-type models or the lack of robustness of augmented Euler models in the presence of more than two components. The model can sustain large density differences across material interfaces without the presence of spurious oscillations in velocity and pressure, and it can accommodate realistic equations of state and arbitrary (pressure- or temperature-based) reaction-rate laws. Under certain conditions, we show that the formulation reduces to well-known augmented Euler or multi-phase models, which have been extensively validated and used in practice. The full hybrid model and its reduced forms are validated against problems with exact (or independently-verified numerical) solutions and evaluated for robustness for rate-stick and shock-induced cavity collapse case-studies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 316, 1 July 2016, Pages 193-217
نویسندگان
, ,