کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6930074 | 867658 | 2016 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Analysis and accurate numerical solutions of the integral equation derived from the linearized BGKW equation for the steady Couette flow
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The integral equation for the flow velocity u(x;k) in the steady Couette flow derived from the linearized Bhatnagar-Gross-Krook-Welander kinetic equation is studied in detail both theoretically and numerically in a wide range of the Knudsen number k between 0.003 and 100.0. First, it is shown that the integral equation is a Fredholm equation of the second kind in which the norm of the compact integral operator is less than 1 on Lp for any 1â¤pâ¤â and thus there exists a unique solution to the integral equation via the Neumann series. Second, it is shown that the solution is logarithmically singular at the endpoints. More precisely, if x=0 is an endpoint, then the solution can be expanded as a double power series of the form ân=0ââm=0âcn,mxn(xlnâ¡x)m about x=0 on a small interval xâ(0,a) for some a>0. And third, a high-order adaptive numerical algorithm is designed to compute the solution numerically to high precision. The solutions for the flow velocity u(x;k), the stress Pxy(k), and the half-channel mass flow rate Q(k) are obtained in a wide range of the Knudsen number 0.003â¤kâ¤100.0; and these solutions are accurate for at least twelve significant digits or better, thus they can be used as benchmark solutions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 316, 1 July 2016, Pages 416-434
Journal: Journal of Computational Physics - Volume 316, 1 July 2016, Pages 416-434
نویسندگان
Shidong Jiang, Li-Shi Luo,