کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6930106 867658 2016 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lattice Boltzmann models based on half-range Gauss-Hermite quadratures
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Lattice Boltzmann models based on half-range Gauss-Hermite quadratures
چکیده انگلیسی
We discuss general features of thermal lattice Boltzmann models based on half-range Gauss quadratures, specialising to the half-range Gauss-Hermite and Gauss-Laguerre cases. The main focus of the paper is on the construction of high order half-range Hermite lattice Boltzmann (HHLB) models. The performance of the HHLB models is compared with that of Laguerre lattice Boltzmann (LLB) and full-range Hermite lattice Boltzmann (HLB) models by conducting convergence tests with respect to the quadrature order on stationary profiles of the particle number density, macroscopic velocity, temperature and heat fluxes in the two-dimensional Couette flow. The Bhatnagar-Gross-Krook (BGK) collision term is used throughout the paper. To reduce the computational costs of the numerical simulations, we use mixed lattice Boltzmann models, constructed using different quadrature methods on each Cartesian axis. For Kn≤0.01, the HLB models require the least number of velocities to satisfy our convergence test. When Kn≥0.05, the HLB models are outperformed in terms of number of velocities employed by both the LLB and the HHLB models. Moreover, we find that the HHLB models require less quadrature points than the LLB models at all tested values of Kn, which we attribute to the Maxwellian form of the weight function for the half-range Hermite polynomials.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 316, 1 July 2016, Pages 760-788
نویسندگان
, ,