کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6930750 867612 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A numerical method to study the dynamics of capillary fluid systems
ترجمه فارسی عنوان
یک روش عددی برای مطالعه پویایی سیستم های مایع مویرگی
کلمات کلیدی
سیستم کاپیلاری، پایداری خطی، حالت های خطی خطی، کشش سطحی، تغییر شکل سطح آزاد،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
We propose a numerical approach to study both the nonlinear dynamics and linear stability of capillary fluid systems. In the nonlinear analysis, the time-dependent fluid region is mapped onto a fixed numerical domain through a coordinate transformation. The hydrodynamic equations are spatially discretized with the Chebyshev spectral collocation technique, while an implicit time advancement is performed using second-order backward finite differences. The resulting algebraic equations are solved with the iterative Newton-Raphson technique. The most novel aspect of the method is the fact that the elements of the Jacobian of the discretized system of equations are symbolic functions calculated before running the simulation. These functions are evaluated numerically in the Newton-Raphson iterations to find the solution at each time step, which reduces considerably the computing time. Besides, this numerical procedure can be easily adapted to solve the eigenvalue problem which determines the linear global modes of the capillary system. Therefore, both the nonlinear dynamics and the linear stability analysis can be conducted with essentially the same algorithm. We validate this numerical approach by studying the dynamics of a liquid bridge close to its minimum volume stability limit. The results are virtually the same as those obtained with other methods. The proposed approach proves to be much more computationally efficient than those other methods. Finally, we show the versatility of the method by calculating the linear global modes of a gravitational jet.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 306, 1 February 2016, Pages 137-147
نویسندگان
, ,