کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6931205 | 867663 | 2015 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An efficient, unconditionally energy stable local discontinuous Galerkin scheme for the Cahn-Hilliard-Brinkman system
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
چکیده انگلیسی
In this paper, we present an efficient and unconditionally energy stable fully-discrete local discontinuous Galerkin (LDG) method for approximating the Cahn-Hilliard-Brinkman (CHB) system, which is comprised of a Cahn-Hilliard type equation and a generalized Brinkman equation modeling fluid flow. The semi-discrete energy stability of the LDG method is proved firstly. Due to the strict time step restriction (Ît=O(Îx4)) of explicit time discretization methods for stability, we introduce a semi-implicit scheme which consists of the implicit Euler method combined with a convex splitting of the discrete Cahn-Hilliard energy strategy for the temporal discretization. The unconditional energy stability of this fully-discrete convex splitting scheme is also proved. Obviously, the fully-discrete equations at the implicit time level are nonlinear, and to enhance the efficiency of the proposed approach, the nonlinear Full Approximation Scheme (FAS) multigrid method has been employed to solve this system of algebraic equations. We also show the nearly optimal complexity numerically. Numerical experiments based on the overall solution method of combining the proposed LDG method, convex splitting scheme and the nonlinear multigrid solver are given to validate the theoretical results and to show the effectiveness of the proposed approach for the CHB system.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 298, 1 October 2015, Pages 387-405
Journal: Journal of Computational Physics - Volume 298, 1 October 2015, Pages 387-405
نویسندگان
Ruihan Guo, Yan Xu,