کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6931417 | 867558 | 2015 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Variance reduction for Fokker-Planck based particle Monte Carlo schemes
ترجمه فارسی عنوان
کاهش واریانس برای طرح های مونک کارلو ذرات مبتنی بر فوکر-پلانک
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Recently, Fokker-Planck based particle Monte Carlo schemes have been proposed and evaluated for simulations of rarefied gas flows [1], [2], [3]. In this paper, the variance reduction for particle Monte Carlo simulations based on the Fokker-Planck model is considered. First, deviational based schemes were derived and reviewed, and it is shown that these deviational methods are not appropriate for practical Fokker-Planck based rarefied gas flow simulations. This is due to the fact that the deviational schemes considered in this study lead either to instabilities in the case of two-weight methods or to large statistical errors if the direct sampling method is applied. Motivated by this conclusion, we developed a novel scheme based on correlated stochastic processes. The main idea here is to synthesize an additional stochastic process with a known solution, which is simultaneously solved together with the main one. By correlating the two processes, the statistical errors can dramatically be reduced; especially for low Mach numbers. To assess the methods, homogeneous relaxation, planar Couette and lid-driven cavity flows were considered. For these test cases, it could be demonstrated that variance reduction based on parallel processes is very robust and effective.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 295, 15 August 2015, Pages 644-664
Journal: Journal of Computational Physics - Volume 295, 15 August 2015, Pages 644-664
نویسندگان
M. Hossein Gorji, Nemanja Andric, Patrick Jenny,