کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6933980 | 1449489 | 2018 | 24 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Author ranking evaluation at scale
ترجمه فارسی عنوان
ارزیابی مقیاس
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
شاخص های نویسنده، رتبه بندی نویسنده، تجزیه و تحلیل استناد، رتبه صفحه،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
We find that PageRank outperforms citation counts in identifying well-established researchers. This holds true when PageRank is computed on author citation graphs but also when PageRank is computed on paper graphs and paper scores are divided among co-authors. In general, the best results are obtained when co-authors receive an equal share of a paper's score, independent of which impact indicator is used to compute paper scores. The results also show that removing author self-citations improves the results of most ranking metrics. Lastly, we find that it is more important to personalise the PageRank algorithm appropriately on the paper level than deciding whether to include or exclude self-citations. However, on the author level, we find that author graph normalisation is more important than personalisation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Informetrics - Volume 12, Issue 3, August 2018, Pages 679-702
Journal: Journal of Informetrics - Volume 12, Issue 3, August 2018, Pages 679-702
نویسندگان
Marcel Dunaiski, Jaco Geldenhuys, Willem Visser,