کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6935037 | 1449556 | 2018 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Batched QR and SVD algorithms on GPUs with applications in hierarchical matrix compression
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We present high performance implementations of the QR and the singular value decomposition of a batch of small matrices hosted on the GPU with applications in the compression of hierarchical matrices. The one-sided Jacobi algorithm is used for its simplicity and inherent parallelism as a building block for the SVD of low rank blocks using randomized methods. We implement multiple kernels based on the level of the GPU memory hierarchy in which the matrices can reside and show substantial speedups against streamed cuSOLVER SVDs. The resulting batched routine is a key component of hierarchical matrix compression, opening up opportunities to perform H-matrix arithmetic efficiently on GPUs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Parallel Computing - Volume 74, May 2018, Pages 19-33
Journal: Parallel Computing - Volume 74, May 2018, Pages 19-33
نویسندگان
Wajih Halim Boukaram, George Turkiyyah, Hatem Ltaief, David E. Keyes,