کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6935171 | 1449560 | 2017 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Reprint of “A parallel connectivity algorithm for de Bruijn graphs in metagenomic applications”
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Dramatic advances in DNA sequencing technology have made it possible to study microbial environments by direct sequencing of environmental DNA samples. Yet, due to the huge volume and high data complexity, current de novo assemblers cannot handle large metagenomic datasets or fail to perform assembly with acceptable quality. This paper presents the first parallel solution for decomposing the metagenomic assembly problem without compromising the post-assembly quality. We transform this problem into that of finding weakly connected components in the de Bruijn graph. We propose a novel distributed memory algorithm to identify the connected subgraphs, and present strategies to minimize the communication volume. We demonstrate the scalability of our algorithm on a soil metagenome dataset with 1.8 billion reads. Our approach achieves a runtime of 22Â min using 1280 Intel Xeon cores for a 421Â GB uncompressed FASTQ dataset. Moreover, our solution is generalizable to finding connected components in arbitrary undirected graphs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Parallel Computing - Volume 70, December 2017, Pages 54-65
Journal: Parallel Computing - Volume 70, December 2017, Pages 54-65
نویسندگان
Patrick Flick, Chirag Jain, Tony Pan, Srinivas Aluru,