کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6935224 868536 2015 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Incremental closeness centrality in distributed memory
ترجمه فارسی عنوان
مرکزیت نزدیک شدن افزایشی در حافظه توزیع شده
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Networks are commonly used to model traffic patterns, social interactions, or web pages. The vertices in a network do not possess the same characteristics: some vertices are naturally more connected and some vertices can be more important. Closeness centrality (CC) is a global metric that quantifies how important is a given vertex in the network. When the network is dynamic and keeps changing, the relative importance of the vertices also changes. The best known algorithm to compute the CC scores makes it impractical to recompute them from scratch after each modification. In this paper, we propose Streamer, a distributed memory framework for incrementally maintaining the closeness centrality scores of a network upon changes. It leverages pipelined, replicated parallelism, and SpMM-based BFSs, and it takes NUMA effects into account. It makes maintaining the closeness centrality values of real-life networks with millions of interactions significantly faster and obtains almost linear speedups on a 64 nodes 8 threads/node cluster.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Parallel Computing - Volume 47, August 2015, Pages 3-18
نویسندگان
, , , ,