کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6938078 | 1449921 | 2018 | 47 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
MSKVS: Adaptive mean shift-based keyframe extraction for video summarization and a new objective verification approach
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
چکیده انگلیسی
Video abstraction is an interesting topic that aims at briefly representing the entire video stream by producing a short summary either statically or dynamically. In this paper, we present an optimal static video summarization method based on keyframe extraction, termed as MSKVS. The proposed MSKVS has three major components: A new feature representation is exploited to describe the visual content of the video, a simple and fast algorithm is proposed to eliminate most similar and redundant frames, and an adaptive mean shift algorithm is used to select the most representative keyframes. We further develop a novel verification technique to measure the amount of information preserved by the produced summary and to make sure that it deserves to present the entire video stream regardless of human opinion impact. We report experimental results on six challenging datasets using different evaluation metrics, showing that MSKVS achieves state-of-the-art performances in a short computation time.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Visual Communication and Image Representation - Volume 55, August 2018, Pages 179-200
Journal: Journal of Visual Communication and Image Representation - Volume 55, August 2018, Pages 179-200
نویسندگان
Rachida Hannane, Abdessamad Elboushaki, Karim Afdel,