کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6938101 1449922 2018 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Salient object detection via a local and global method based on deep residual network
ترجمه فارسی عنوان
تشخیص شیء برجسته از طریق یک روش محلی و جهانی بر اساس شبکه عمیق باقی مانده
کلمات کلیدی
تشخیص جسم برجسته، شبکه عمیق باقی مانده، ویژگی های محلی و جهانی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Salient object detection is a fundamental problem in both pattern recognition and image processing tasks. Previous salient object detection algorithms usually involve various features based on priors/assumptions about the properties of the objects. Inspired by the effectiveness of recently developed deep feature learning, we propose a novel Salient Object Detection via a Local and Global method based on Deep Residual Network model (SOD-LGDRN) for saliency computation. In particular, we train a deep residual network (ResNet-G) to measure the prominence of the salient object globally and extract multiple level local features via another deep residual network (ResNet-L) to capture the local property of the salient object. The final saliency map is obtained by combining the local-level and global-level saliency via Bayesian fusion. Quantitative and qualitative experiments on six benchmark datasets demonstrate that our SOD-LGDRN method outperforms eight state-of-the-art methods in the salient object detection.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Visual Communication and Image Representation - Volume 54, July 2018, Pages 1-9
نویسندگان
, , , , , , ,