کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6938280 | 1449924 | 2018 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fast BCS-FOCUSS and DBCS-FOCUSS with augmented Lagrangian and minimum residual methods
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Block compressive sensing FOCal Underdetermined System Solver (BCS-FOCUSS) and distributed BCS-FOCUSS (DBCS-FOCUSS) are iterative algorithms for individual and joint recovery of correlated images. The performance of both these algorithms was noticed to be best within BCS framework. However, both these algorithms suffer from high computational complexity and recovery time. This is caused by the need for an explicit computation of matrix inverse in each iteration and a slow convergence from a poor starting point. In this paper, we propose a methodology to obtain fast and good initial solution using the augmented Lagrangian method to improve the convergence rate of both algorithms. We also propose to incorporate the minimum residual method to avoid matrix inversion to reduce the computational cost. Simulation studies with the proposed modified BCS-FOCUSS and DBCS-FOCUSS demonstrate a significant reduction in the computational cost and recovery time while improving reconstruction quality for both individual and joint reconstruction algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Visual Communication and Image Representation - Volume 52, April 2018, Pages 92-100
Journal: Journal of Visual Communication and Image Representation - Volume 52, April 2018, Pages 92-100
نویسندگان
Amit Satish Unde, Deepthi P.P.,