کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6938425 | 1449927 | 2017 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A novel Monogenic Directional Pattern (MDP) and pseudo-Voigt kernel for facilitating the identification of facial emotions
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Facial expressions are the best way of communicating human emotions. This paper proposes a novel Monogenic Directional Pattern (MDP) for extracting features from the face. To reduce the time spent on choosing the best kernel, a novel pseudo-Voigt kernel is chosen as the common kernel for dimension reduction proposed as pseudo-Voigt kernel-based Generalized Discriminant Analysis (PVK-GDA). The pseudo-Voigt kernel-based Extreme Learning Machine (PVK-ELM) is used for better recognition of facial emotions. The efficiency of the approach is proved by experimenting with the Japanese Female Facial Expression (JAFFE), Cohn Kanade (CK+), Multimedia Understanding Group (MUG), Static Facial Expressions in the Wild (SFEW) and Oulu-Chinese Academy of Science, Institute of Automation (Oulu-CASIA) datasets. This approach achieves better classification accuracy of 96.7% for JAFFE, 99.4% for CK+, 98.6% for MUG, 35.6% for SFEW and 88% for Oulu-CASIA, which is certainly higher when compared to other techniques in the literature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Visual Communication and Image Representation - Volume 49, November 2017, Pages 459-470
Journal: Journal of Visual Communication and Image Representation - Volume 49, November 2017, Pages 459-470
نویسندگان
A. Sherly Alphonse, Dejey Dharma,