کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6938437 869578 2016 35 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Kernel discriminant analysis of Block-wise Gaussian Derivative Phase Pattern Histogram for palmprint recognition
ترجمه فارسی عنوان
تجزیه و تحلیل جدایی ناپذیر از هیستوگرام الگوهای فازی مشتق گاوس بلوک برای به رسمیت شناختن دستمال کاغذی
کلمات کلیدی
منطقه مورد نظر، فیلتر مشتق گاوشی، تجزیه و تحلیل محرک هسته، دستمال کاغذی چند منظوره، فیوژن سطح نمره،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
This paper presents an efficient palmprint recognition technique for palmprints collected with visible as well as multispectral imaging system. ROI extraction is a challenging task for palmprint captured in unconstrained environment. ROI extracted by gaps between fingers and width of palm makes system rotation and translation invariant. Approximation ROI obtained by First-level decomposition of ROI using Haar wavelet reduces computational overhead as well as noise. Phase quantization of AROI by Gaussian derivative filter gives Gaussian derivative phase pattern image and its block-wise histograms are concatenated to form a single vector referred as BGDPPH descriptor. Dimension reduction is performed by increasing discrimination between genuine and impostor scores using chi-RBF kernel discriminant analysis (KDA). Weighted score level fusion of spectral palmprints on Fisher criterion improves recognition rate. Robustness of the proposed BGDPPH descriptor against blur and noise is evaluated on four gray-scale and two multispectral palmprint databases collected through touch-based and touch-less acquisition devices.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Visual Communication and Image Representation - Volume 40, Part B, October 2016, Pages 432-448
نویسندگان
, ,