کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6938525 | 869578 | 2016 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Representing 3D shapes based on implicit surface functions learned from RBF neural networks
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We propose to represent the shape of 3D objects using a neural network classifier. The 3D shape is learned from a neural network, where Radial Basis Function (RBF) is applied as the activation function for each perceptron. The implicit functions derived from the neural network is a combination of radial basis functions, which can represent complex shapes. The use of RBF provides a rotation, translation and scaling invariant feature to represent the shape. We conduct experiments on a new prostate dataset and public datasets. Our testing results show that our neural network-based method can accurately represent various shapes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Visual Communication and Image Representation - Volume 40, Part B, October 2016, Pages 852-860
Journal: Journal of Visual Communication and Image Representation - Volume 40, Part B, October 2016, Pages 852-860
نویسندگان
Guoyu Lu, Li Ren, Abhishek Kolagunda, Xiaolong Wang, Ismail B. Turkbey, Peter L. Choyke, Chandra Kambhamettu,