کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6938525 869578 2016 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Representing 3D shapes based on implicit surface functions learned from RBF neural networks
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Representing 3D shapes based on implicit surface functions learned from RBF neural networks
چکیده انگلیسی
We propose to represent the shape of 3D objects using a neural network classifier. The 3D shape is learned from a neural network, where Radial Basis Function (RBF) is applied as the activation function for each perceptron. The implicit functions derived from the neural network is a combination of radial basis functions, which can represent complex shapes. The use of RBF provides a rotation, translation and scaling invariant feature to represent the shape. We conduct experiments on a new prostate dataset and public datasets. Our testing results show that our neural network-based method can accurately represent various shapes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Visual Communication and Image Representation - Volume 40, Part B, October 2016, Pages 852-860
نویسندگان
, , , , , , ,