کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6938671 1449963 2018 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multi-view label embedding
ترجمه فارسی عنوان
تعبیه برچسب چند نمایشه
کلمات کلیدی
طبقه بندی چند لایک، تعبیه ی برچسب چندین نمایش کاهش فاصله فضای برچسب
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Multi-label classification has been successfully applied to image annotation, information retrieval, text categorization, etc. When the number of classes increases significantly, the traditional multi-label learning models will become computationally impractical. Label space dimension reduction (LSDR) is then developed to alleviate the effect of the high dimensionality of labels. However, almost all the existing LSDR methods focus on single-view learning. In this paper, we develop a multi-view label embedding (MVLE) model by exploiting the multi-view correlations. The label space and feature space of each view are bridged by a latent space. To exploit the consensus among different views, multi-view latent spaces are correlated by Hilbert-Schmidt independence criterion(HSIC). For a test sample, it is firstly embedded to the latent space of each view and then projected to the label space. The prediction is conducted by combining the multi-view outputs. Experiments on benchmark databases show that MVLE outperforms the state-of-the-art LSDR algorithms in both multi-view settings and different multi-view learning strategies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 84, December 2018, Pages 126-135
نویسندگان
, , , , ,