کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6938759 1449964 2018 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Polyp detection during colonoscopy using a regression-based convolutional neural network with a tracker
ترجمه فارسی عنوان
تشخیص پولیپ در طی کولونوسکوپی با استفاده از یک شبکه عصبی کانولوشن مبتنی بر رگرسیون با یک ردیاب
کلمات کلیدی
غربالگری سرطان هوشمند، آندوسکوپی درمانی، انفورماتیک آندوسکوپی، شبکه سنسور بدن، یادگیری عمیق، اطلاع رسانی سلامت،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
A computer-aided detection (CAD) tool for locating and detecting polyps can help reduce the chance of missing polyps during colonoscopy. Nevertheless, state-of-the-art algorithms were either computationally complex or suffered from low sensitivity and therefore unsuitable to be used in real clinical setting. In this paper, a novel regression-based Convolutional Neural Network (CNN) pipeline is presented for polyp detection during colonoscopy. The proposed pipeline was constructed in two parts: 1) to learn the spatial features of colorectal polyps, a fast object detection algorithm named ResYOLO was pre-trained with a large non-medical image database and further fine-tuned with colonoscopic images extracted from videos; and 2) temporal information was incorporated via a tracker named Efficient Convolution Operators (ECO) for refining the detection results given by ResYOLO. Evaluated on 17,574 frames extracted from 18 endoscopic videos of the AsuMayoDB, the proposed method was able to detect frames with polyps with a precision of 88.6%, recall of 71.6% and processing speed of 6.5 frames per second, i.e. the method can accurately locate polyps in more frames and at a faster speed compared to existing methods. In conclusion, the proposed method has great potential to be used to assist endoscopists in tracking polyps during colonoscopy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 83, November 2018, Pages 209-219
نویسندگان
, , , , ,