| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
|---|---|---|---|---|
| 6938815 | 1449966 | 2018 | 39 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Random forest classification based acoustic event detection utilizing contextual-information and bottleneck features
ترجمه فارسی عنوان
طبقه بندی تصادفی جنگل بر اساس تشخیص رویداد آکوستیک با استفاده از اطلاعات متنی-اطلاعات و ویژگی های تنگنا
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تشخیص رویداد آکوستیک، اطلاعات متنی، ویژگی های تنگنائی جهانی، ویژگی های تنگنای دسته خاص،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
The variety of event categories and event boundary information have resulted in limited success for acoustic event detection systems. To deal with this, we propose to utilize the long contextual information, low-dimensional discriminant global bottleneck features and category-specific bottleneck features. By concatenating several adjacent frames together, the use of contextual information makes it easier to cope with acoustic signals with long duration. Global and category-specific bottleneck features can extract the prior knowledge of the event category and boundary, which is ideally matched by the task of an event detection system. Evaluations on the UPC-TALP and ITC-IRST databases of highly variable acoustic events demonstrate the effectiveness of the proposed approaches by achieving a 5.30% and 4.44% absolute error rate improvement respectively compared to the state of art technique.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 81, September 2018, Pages 1-13
Journal: Pattern Recognition - Volume 81, September 2018, Pages 1-13
نویسندگان
Xianjun Xia, Roberto Togneri, Ferdous Sohel, David Huang,
