کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6938952 1449967 2018 42 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Unified multi-spectral pedestrian detection based on probabilistic fusion networks
ترجمه فارسی عنوان
تشخیص چند عابر پیاده یکپارچه بر اساس شبکه های همجوشی احتمالی
کلمات کلیدی
تلفیق سنسور چند طیفی، تشخیص عابر پیاده، همجوشی وزن کانال، تلفات احتمالی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Despite significant progress in machine learning, pedestrian detection in the real-world is still regarded as one of the challenging problems, limited by occluded appearances, cluttered backgrounds, and bad visibility at night. This has caused detection approaches using multi-spectral sensors such as color and thermal which could be complementary to each other. In this paper, we propose a novel sensor fusion framework for detecting pedestrians even in challenging real-world environments. We design a convolutional neural network (CNN) architecture that consists of three-branch detection models taking different modalities as inputs. Unlike existing methods, we consider all detection probabilities from each modality in a unified CNN framework and selectively use them through a channel weighting fusion (CWF) layer to maximize the detection performance. An accumulated probability fusion (APF) layer is also introduced to combine probabilities from different modalities at the proposal-level. We formulate these sub-networks into a unified network, so that it is possible to train the whole network in an end-to-end manner. Our extensive evaluation demonstrates that the proposed method outperforms the state-of-the-art methods on the challenging KAIST, CVC-14, and DIML multi-spectral pedestrian datasets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 80, August 2018, Pages 143-155
نویسندگان
, , ,