کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6939203 1449969 2018 39 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Integrating multi-level deep learning and concept ontology for large-scale visual recognition
ترجمه فارسی عنوان
ادغام چند سطح آموزش عمیق و هستی شناسی مفهوم برای تشخیص بصری در مقیاس بزرگ
کلمات کلیدی
تشخیص بصری در مقیاس وسیع، چند سطح آموزش عمیق، شبکه های عمیق چندگانه، مفهوم هستی شناسی، یادگیری چند کاره طبقه بندی درخت،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
To support large-scale visual recognition (i.e., recognizing thousands or even tens of thousands of object classes), a multi-level deep learning algorithm is developed to learn multiple deep networks and a tree classifier jointly, where a concept ontology is constructed to organize large numbers of object classes hierarchically in a coarse-to-fine fashion and determine the inter-related learning tasks automatically. Our multi-level deep learning algorithm can: (a) train multiple deep networks simultaneously to achieve more discriminative representations of both coarse-grained groups and fine-grained object classes at different levels of the concept ontology (i.e., learning multiple sets of deep features simultaneously for different tasks); (b) leverage multi-task learning to train more discriminative classifiers for the fine-grained object classes in the same group to enhance their separability significantly and enable inter-class knowledge transferring; and (c) learn multiple deep networks and the tree classifier jointly in an end-to-end fashion. Our experimental results on three image sets have demonstrated that our multi-level deep learning algorithm can achieve very competitive results on both the accuracy rates and the computational efficiency for large-scale visual recognition.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 78, June 2018, Pages 198-214
نویسندگان
, , , , ,