کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6939243 | 1449970 | 2018 | 38 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Deep Fisher discriminant learning for mobile hand gesture recognition
ترجمه فارسی عنوان
یادگیری تمایز عمیق فیشر برای تشخیص ژست دستانه تلفن همراه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
فیشر تبعیض آمیز، تشخیص دست ژست، دستگاه های موبایل
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Gesture recognition becomes a popular analytics tool for extracting the characteristics of user movement and enables numerous practical applications in the biometrics field. Despite recent advances in this technique, complex user interaction and the limited amount of data pose serious challenges to existing methods. In this paper, we present a novel approach for hand gesture recognition based on user interaction on mobile devices. We have developed two deep models by integrating Bidirectional Long-Short Term Memory (BiLSTM) network and Bidirectional Gated Recurrent Unit (BiGRU) with Fisher criterion, termed as F-BiLSTM and F-BiGRU respectively. These two Fisher discriminative models can classify user's gesture effectively by analyzing the corresponding acceleration and angular velocity data of hand motion. In addition, we build a large Mobile Gesture Database (MGD) containing 5547 sequences of 12 gestures. With extensive experiments, we demonstrate the superior performance of the proposed method compared to the state-of-the-art BiLSTM and BiGRU on MGD database and two other benchmark databases (i.e., BUAA mobile gesture and SmartWatch gesture). The source code and MGD database will be made publicly available at https://github.com/bczhangbczhang/Fisher-Discriminant-LSTM.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 77, May 2018, Pages 276-288
Journal: Pattern Recognition - Volume 77, May 2018, Pages 276-288
نویسندگان
Ce Li, Chunyu Xie, Baochang Zhang, Chen Chen, Jungong Han,