کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6939441 | 1449971 | 2018 | 33 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hierarchical online NMF for detecting and tracking topic hierarchies in a text stream
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Discovering and tracking topics in a text stream has attracted the interests of many researchers. A limitation of most existing methods is that they organize topics in flat structures. Topic hierarchy could reveal the potential relations between topics, which can help to find high quality topics when analyzing the text stream. In this paper, a hierarchical online non-negative matrix factorization method (HONMF) is proposed to generate topic hierarchies from text streams. The proposed method can dynamically adjust the topic hierarchy to adapt to the emerging, evolving, and fading processes of the topics. In the experiment, HONMF is evaluated under a variety of metrics. Compared with the baseline methods, our method can achieve better performance with competitive time efficiency.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 76, April 2018, Pages 203-214
Journal: Pattern Recognition - Volume 76, April 2018, Pages 203-214
نویسندگان
Tu Ding, Chen Ling, Lv Mingqi, Shi Hongyu, Chen Gencai,