کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6939592 | 1449971 | 2018 | 48 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Atlas-based reconstruction of high performance brain MR data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Image priors based on total variation (TV) and nonlocal patch similarity have shown to be powerful techniques for the reconstruction of magnetic resonance (MR) images from undersampled k-space measurements. However, due to the uniform regularization of gradients, standard TV approaches often over-smooth edges in the image, resulting in the loss of important details. This paper proposes a novel compressed sensing method which combines both external and internal information for the high-performance reconstruction of MRI data. A probabilistic atlas is used to model the spatial distribution of gradients that correspond to various anatomical structures in the image. This atlas is then employed to control the level of gradient regularization at each image location, within a weighted TV regularization prior. The proposed method also leverages the redundancy of nonlocal similar patches through a sparse representation model. Experiments on T1-weighted images from the ABIDE dataset show the proposed method to outperform state-of-the-art approaches, for different sampling rates and noise levels.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 76, April 2018, Pages 549-559
Journal: Pattern Recognition - Volume 76, April 2018, Pages 549-559
نویسندگان
Mingli Zhang, Christian Desrosiers, Caiming Zhang,