کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6939599 | 1449971 | 2018 | 43 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
DSRF: A flexible trajectory descriptor for articulated human action recognition
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we propose a novel skeletal representation that models the human body as the articulated interconnections of multiple rigid bodies. An articulated human action can be viewed as the combination of multiple rigid body motion trajectories. The Dual Square-Root Function (DSRF) descriptor is firstly introduced by calculating the gradient-based invariants for representing 6-D rigid body motion trajectories, which can offer substantial advantages over raw data. To effectively incorporate the DSRF descriptors in the skeletal representation, a skeleton is decomposed into five parts and the most informative part method is raised for offering compact representation. Besides, two rigid body configurations are investigated for representing the movement of each part. In the recognition stage, we first follow the simple template matching strategy with the nearest neighbor classifier. A robust distance measure between two skeletal representations is designed. In addition, the DSRF-based skeletal representation can be encoded as a sparse histogram by the bag-of-words approach. Then, a support vector machine classifier with chi-square kernel is trained for multiclass recognition tasks. Experimental results on three benchmark datasets demonstrate that our proposed approach outperforms existing skeleton representations in terms of recognition accuracy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 76, April 2018, Pages 137-148
Journal: Pattern Recognition - Volume 76, April 2018, Pages 137-148
نویسندگان
Yao Guo, Youfu Li, Zhanpeng Shao,