کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6939693 1449972 2018 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Locality constraint distance metric learning for traffic congestion detection
ترجمه فارسی عنوان
یادگیری متریک فاصله محدودیت محل برای تشخیص احتقان ترافیک
کلمات کلیدی
یادگیری فاصله متریک، محدودیت محل، رگرسیون هسته، تجزیه و تحلیل تراکم ترافیک،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
In this paper, a locality constraint distance metric learning is proposed for traffic congestion detection. First of all, an accurate and unified definition of congestion is proposed and the congestion level analysis is treated as a regression problem in the paper. Based on that definition, a dataset consists of 20 different scenes is constructed for the first time since the existing dataset is not diverse for real applications. To characterize the congestion level in different scenes, the low-level texture feature and kernel regression is utilized to detect traffic congestion level. To reduce the influence among different scenes, a Locality Constraint Distance Metric Learning (LCML) which ensured the local smoothness and preserved the correlations between samples is proposed. The extensive experiments confirm the effectiveness of the proposed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 75, March 2018, Pages 272-281
نویسندگان
, , ,