کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6939746 870056 2017 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Discriminative sparse flexible manifold embedding with novel graph for robust visual representation and label propagation
ترجمه فارسی عنوان
تعبیه منیفولد انعطاف پذیر انعطاف پذیر با گراف جدید برای نمایش بصری قوی و انتشار برچسب
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
We explore the problem of robust visual representation and enhanced label prediction. Technically, a Discriminative Sparse Flexible Manifold Embedding (SparseFME) method with novel graph is proposed. SparseFME enhances the representation and label prediction powers of FME by improving the reliability and robustness of distance metric, such as using the l2,1-norm to measure the flexible regression residue encoding the mismatch between embedded features and the soft labels, and regularizing the l2,1-norm on the soft labels directly to boost the discriminating power so that less unfavorable mixed signs that may result in negative effects on performance are included. Besides, our SparseFME replaces the noise-sensitive Frobenius norm used in FME by l2,1-norm to encode the projection that maps data into soft labels, so the projection can be ensured to be sparse in rows so that discriminative soft labels can be learnt in the latent subspace. Thus, more accurate identification of hard labels can be obtained. To obtain high inter-class separation and high intra-class compactness of the predicted soft labels, and encode the neighborhood of each sample more accurately, we also propose a novel graph weight construction method by integrating class information and considering a certain kind of similarity/dissimilarity of samples so that the true neighborhoods can be discovered. The theoretical convergence analysis and connection to other models are also presented. State-of-art performances are delivered by our SparseFME compared with several related criteria.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 61, January 2017, Pages 492-510
نویسندگان
, , , , , ,