کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6939836 | 870056 | 2017 | 38 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Bacterial colony counting with Convolutional Neural Networks in Digital Microbiology Imaging
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Counting bacterial colonies on microbiological culture plates is a time-consuming, error-prone, nevertheless essential quantitative task in Clinical Microbiology Laboratories. With this work we explore the possibility to find effective solutions to the above issue by designing and testing two different machine learning approaches. The first one is based on the extraction of a complete set of handcrafted morphometric and radiometric features used within a Support Vector Machines solution. The second one is based on the design and configuration of a Convolutional Neural Networks deep learning architecture. To validate, in a real and challenging clinical scenario, the proposed bacterial load estimation techniques, we built and publicly released a fully labeled large and representative database of both single and aggregated bacterial colonies extracted from routine clinical laboratory culture plates. Dataset enhancement approaches have also been experimentally tested for performance optimization. The adopted deep learning approach outperformed the handcrafted feature based one, and also a conventional reference technique, by a large margin, becoming a preferable solution for the addressed Digital Microbiology Imaging quantification task, especially in the emerging context of Full Laboratory Automation systems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 61, January 2017, Pages 629-640
Journal: Pattern Recognition - Volume 61, January 2017, Pages 629-640
نویسندگان
Alessandro Ferrari, Stefano Lombardi, Alberto Signoroni,