کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6939843 | 870056 | 2017 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
LLNet: A deep autoencoder approach to natural low-light image enhancement
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In surveillance, monitoring and tactical reconnaissance, gathering visual information from a dynamic environment and accurately processing such data are essential to making informed decisions and ensuring the success of a mission. Camera sensors are often cost-limited to capture clear images or videos taken in a poorly-lit environment. Many applications aim to enhance brightness, contrast and reduce noise content from the images in an on-board real-time manner. We propose a deep autoencoder-based approach to identify signal features from low-light images and adaptively brighten images without over-amplifying/saturating the lighter parts in images with a high dynamic range. We show that a variant of the stacked-sparse denoising autoencoder can learn from synthetically darkened and noise-added training examples to adaptively enhance images taken from natural low-light environment and/or are hardware-degraded. Results show significant credibility of the approach both visually and by quantitative comparison with various techniques.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 61, January 2017, Pages 650-662
Journal: Pattern Recognition - Volume 61, January 2017, Pages 650-662
نویسندگان
Kin Gwn Lore, Adedotun Akintayo, Soumik Sarkar,