کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6939915 870071 2016 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Uncooperative gait recognition: Re-ranking based on sparse coding and multi-view hypergraph learning
ترجمه فارسی عنوان
به رسمیت شناختن قدم زدن بدون همکاری: رتبه بندی مجدد بر اساس برنامه نویسی کمی و چندگانه یادگیری بیش از حد
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Gait is an important biometric which can operate from a distance without subject cooperation. However, it is easily affected by changes in covariate conditions (carrying, clothing, view angle, walking speed, random noise etc.). It is hard for training set to cover all conditions. Bipartite ranking model has achieved success in gait recognition without assumption of subject cooperation. We propose a multi-view hypergraph learning re-ranking (MHLRR) method by integrating multi-view hypergraph learning (MHL) with hypergraph-based re-ranking framework. Sparse coding re-ranking (SCRR) and MHLRR are integrated under the graph-based framework to get a model. We define it as the sparse coding multi-view hypergraph learning re-ranking (SCMHLRR) method, which makes our approach achieve higher recognition accuracy under a genuine uncooperative setting. Extensive experiments demonstrate that our approach drastically outperforms existing ranking based methods, achieving good increase in recognition rate under the most difficult uncooperative settings.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 53, May 2016, Pages 116-129
نویسندگان
, ,