کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6940056 | 869737 | 2016 | 31 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A computationally efficient scheme for feature extraction with kernel discriminant analysis
ترجمه فارسی عنوان
یک طرح محاسباتی کارآمد برای استخراج ویژگی با تجزیه و تحلیل عاملی هسته
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تجزیه و تحلیل محرک هسته، پیچیدگی محاسباتی، روش لاگرانژ، منظم سازی، تشخیص الگو،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
The kernel discriminant analysis (KDA), an extension of the linear discriminant analysis (LDA) and null space-based LDA into the kernel space, generally provides good pattern recognition (PR) performance for both small sample size (SSS) and non-SSS PR problems. Due to the eigen-decomposition technique adopted, however, the original scheme for the feature extraction with the KDA suffers from a high complexity burden. In this paper, we derive a transformation of the KDA into a linear equation problem, and propose a novel scheme for the feature extraction with the KDA. The proposed scheme is shown to provide us with a reduction of complexity without degradation of PR performance. In addition, to enhance the PR performance further, we address the incorporation of regularization into the proposed scheme.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 50, February 2016, Pages 45-55
Journal: Pattern Recognition - Volume 50, February 2016, Pages 45-55
نویسندگان
Hwang-Ki Min, Yuxi Hou, Sangwoo Park, Iickho Song,