کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6940103 | 1450007 | 2018 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Structured sparse K-means clustering via Laplacian smoothing
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We propose a structured sparse K-means clustering algorithm that learns the cluster assignments and feature weights simultaneously. Compared to previous approaches, including K-means in MacQueen [28] and sparse K-means in Witten and Tibshirani [46], our method exploits the correlation information among features via the Laplacian smoothing technique, so as to achieve superior clustering accuracy. At the same time, the relevant features learned by our method are more structured, hence have better interpretability. The practical benefits of our method are demonstrated through extensive experiments on gene expression data and face images.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 112, 1 September 2018, Pages 63-69
Journal: Pattern Recognition Letters - Volume 112, 1 September 2018, Pages 63-69
نویسندگان
Weikang Gong, Renbo Zhao, Stefan Grünewald,