کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6940297 | 1450010 | 2018 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A novel kNN algorithm with data-driven k parameter computation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper studies an example-driven k-parameter computation that identifies different k values for different test samples in kNN prediction applications, such as classification, regression and missing data imputation. This is carried out with reconstructing a sparse coefficient matrix between test samples and training data. In the reconstruction process, an â1ânorm regularization is employed to generate an element-wise sparsity coefficient matrix, and an LPP (Locality Preserving Projection) regularization is adopted to keep the local structures of data for achieving the efficiency. Further, with the learnt k value, kNN approach is applied to classification, regression and missing data imputation. We experimentally evaluate the proposed approach with 20 real datasets, and show that our algorithm is much better than previous kNN algorithms in terms of data mining tasks, such as classification, regression and missing value imputation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 109, 15 July 2018, Pages 44-54
Journal: Pattern Recognition Letters - Volume 109, 15 July 2018, Pages 44-54
نویسندگان
Shichao Zhang, Debo Cheng, Zhenyun Deng, Ming Zong, Xuelian Deng,