| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 6940418 | 1450012 | 2018 | 11 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Reinforcement online learning for emotion prediction by using physiological signals
												
											ترجمه فارسی عنوان
													تقویت یادگیری آنلاین برای پیش بینی احساسات با استفاده از سیگنال های فیزیولوژیکی 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													 چشم انداز کامپیوتر و تشخیص الگو
												
											چکیده انگلیسی
												Physiological signals generated from human internal organs can objectively and truly reflect the real-time variations of human emotion and monitor body situation. Recently, with the accessibility of a massive number of physiological signal data, emotion analysis by using physiological signals is attracting an increasing attention and many methods have been reported by using electroencephalogram (EEG) or peripheral physiological signals. Although the prominent online learning methods can predict the emotion status with time varying physiological signals, it does not consider the reward of current operation in each iteration. To tackle this problem, in this paper, we propose a reinforcement online learning (ROL) method for real-time emotion state prediction by exploiting the reward to modify the predictor during the online training iterations. In each iteration, we evaluate the reward and then select some specific instances into predictor learning. It gains both significant time reduction and prominent performance. We apply the reinforcement online learning to least squares (LS) and support vector regression (SVR) for Emotion Prediction, respectively. Extensive experiments are conducted on artificial dataset and real-world physiological signal dataset (DEAP dataset) and the experimental results validate the effectiveness of the proposed method.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 107, 1 May 2018, Pages 123-130
											Journal: Pattern Recognition Letters - Volume 107, 1 May 2018, Pages 123-130
نویسندگان
												Weifeng Liu, Lianbo Zhang, Dapeng Tao, Jun Cheng, 
											