کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6940602 | 1450015 | 2018 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
LightenNet: A Convolutional Neural Network for weakly illuminated image enhancement
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Weak illumination or low light image enhancement as pre-processing is needed in many computer vision tasks. Existing methods show limitations when they are used to enhance weakly illuminated images, especially for the images captured under diverse illumination circumstances. In this letter, we propose a trainable Convolutional Neural Network (CNN) for weakly illuminated image enhancement, namely LightenNet, which takes a weakly illuminated image as input and outputs its illumination map that is subsequently used to obtain the enhanced image based on Retinex model. The proposed method produces visually pleasing results without over or under-enhanced regions. Qualitative and quantitative comparisons are conducted to evaluate the performance of the proposed method. The experimental results demonstrate that the proposed method achieves superior performance than existing methods. Additionally, we propose a new weakly illuminated image synthesis approach, which can be use as a guide for weakly illuminated image enhancement networks training and full-reference image quality assessment.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 104, 1 March 2018, Pages 15-22
Journal: Pattern Recognition Letters - Volume 104, 1 March 2018, Pages 15-22
نویسندگان
Chongyi Li, Jichang Guo, Fatih Porikli, Yanwei Pang,