کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6940814 1450019 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Parameter-free Laplacian centrality peaks clustering
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Parameter-free Laplacian centrality peaks clustering
چکیده انگلیسی
As an important tool of data mining, clustering analysis can measure similarity between different data and classify them. It is widely applied in many fields such as pattern recognition, economics and biology. In this paper, we propose a new clustering algorithm. First, original unclassified dataset is converted into a weighted complete graph in which a node represents a data point and distance between two data points is used as weight of the edge between the corresponding two nodes. Second, local importance of each node in the network is calculated and evaluated by Laplacian centrality. The cluster center has higher Laplacian centrality than surrounding neighbor nodes and relatively large distance from nodes with higher Laplacian centralities. The new algorithm is a true parameter-free clustering method. It can automatically classify the dataset without any priori parameters. In this paper, the new algorithm was compared with 8 well-known clustering algorithms in 7 real datasets. Results show that the proposed algorithm has good clustering effect.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 100, 1 December 2017, Pages 167-173
نویسندگان
, , , , , ,