کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6940832 | 1450020 | 2017 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Learning features combination for human action recognition from skeleton sequences
ترجمه فارسی عنوان
ترکیبی از یادگیری برای تشخیص عمل انسان از توالی های اسکلت
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Human action recognition is a challenging task due to the complexity of human movements and to the variety among the same actions performed by distinct subjects. Recent technologies provide the skeletal representation of human body extracted in real time from depth maps, which is a high discriminant information for efficient action recognition. In this context, we present a new framework for human action recognition from skeleton sequences. We propose extracting sets of spatial and temporal local features from subgroups of joints, which are aggregated by a robust method based on the VLAD algorithm and a pool of clusters. Several feature vectors are then combined by a metric learning method inspired by the LMNN algorithm with the objective to improve the classification accuracy using the nonparametric k-NN classifier. We evaluated our method on three public datasets, including the MSR-Action3D, the UTKinect-Action3D, and the Florence 3D Actions dataset. As a result, the proposed framework performance overcomes the methods in the state of the art on all the experiments.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 99, 1 November 2017, Pages 13-20
Journal: Pattern Recognition Letters - Volume 99, 1 November 2017, Pages 13-20
نویسندگان
Diogo Carbonera Luvizon, Hedi Tabia, David Picard,