کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6940845 1450020 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Learning assistive strategies for exoskeleton robots from user-robot physical interaction
ترجمه فارسی عنوان
استراتژی های کمک آموزشی برای روبات های انعطاف پذیر از تعامل فیزیکی کاربر روبات
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Social demand for exoskeleton robots that physically assist humans has been increasing in various situations due to the demographic trends of aging populations. With exoskeleton robots, an assistive strategy is a key ingredient. Since interactions between users and exoskeleton robots are bidirectional, the assistive strategy design problem is complex and challenging. In this paper, we explore a data-driven learning approach for designing assistive strategies for exoskeletons from user-robot physical interaction. We formulate the learning problem of assistive strategies as a policy search problem and exploit a data-efficient model-based reinforcement learning framework. Instead of explicitly providing the desired trajectories in the cost function, our cost function only considers the user's muscular effort measured by electromyography signals (EMGs) to learn the assistive strategies. The key underlying assumption is that the user is instructed to perform the task by his/her own intended movements. Since the EMGs are observed when the intended movements are achieved by the user's own muscle efforts rather than the robot's assistance, EMGs can be interpreted as the “cost” of the current assistance. We applied our method to a 1-DoF exoskeleton robot and conducted a series of experiments with human subjects. Our experimental results demonstrated that our method learned proper assistive strategies that explicitly considered the bidirectional interactions between a user and a robot with only 60 seconds of interaction. We also showed that our proposed method can cope with changes in both the robot dynamics and movement trajectories.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 99, 1 November 2017, Pages 67-76
نویسندگان
, , , , ,