کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6940893 870309 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A new micro-objects-based evaluation measure for co-clustering algorithms
ترجمه فارسی عنوان
یک ارزیابی مبتنی بر میکرو اشیاء جدید برای الگوریتم های همکاری خوشه ای
کلمات کلیدی
ارزیابی الگوریتم خوشه بندی، اقدامات خارجی، همکاری خوشه ای،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
In this work, we present MOCICE-BCubed F1, a new external measure for evaluating co-clusterings, in the scenario where gold standard annotations are available for both the object clusters and the associated feature subspaces. Our proposal is an extension, using the so-called micro-objects transformation, of CICE-BCubed F1, an evaluation measure for traditional clusterings that has been proven to satisfy the most comprehensive set of meta-evaluation conditions for that task. Additionally, the proposed measure adequately handles the occurrence of overlapping in both the object and feature spaces. We prove that MOCICE-BCubed F1 satisfies the most comprehensive set of meta-evaluation conditions so far enunciated for co-clusterings. Moreover, when used for evaluating traditional clusterings, which are viewed as a particular case of co-clusterings, the proposed measure also satisfies the most comprehensive set of meta-evaluation conditions so far enunciated for the traditional task.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 84, 1 December 2016, Pages 142-148
نویسندگان
, ,