| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 6940899 | 870309 | 2016 | 10 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Enhancing SIFT-based image registration performance by building and selecting highly discriminating descriptors
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													 چشم انداز کامپیوتر و تشخیص الگو
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												In this paper we will investigate the gradient utilization in building SIFT (Scale Invariant Feature Transform)-like descriptors for image registration. There are generally two types of gradient information, i.e. gradient magnitude and gradient occurrence, which can be used for building SIFT-like descriptors. We will provide a theoretical analysis on the effectiveness of each of the two types of gradient information when used individually. Based on our analysis, we will propose a novel technique which systematically uses both types of gradient information together for image registration. Moreover, we will propose a strategy to select keypoint matches with a higher discrimination. The proposed technique can be used for both mono-modal and multi-modal image registration. Our experimental results show that the proposed technique improves registration accuracy over existing SIFT-like descriptors.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 84, 1 December 2016, Pages 156-162
											Journal: Pattern Recognition Letters - Volume 84, 1 December 2016, Pages 156-162
نویسندگان
												Guohua Lv, Shyh Wei Teng, Guojun Lu,