کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6941134 870156 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Feature subset selection using naive Bayes for text classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Feature subset selection using naive Bayes for text classification
چکیده انگلیسی
Feature subset selection is known to improve text classification performance of various classifiers. The model using the selected features is often regarded as if it had generated the data. By taking its uncertainty into account, the discrimination capabilities can be measured by a global selection index (GSI), which can be used in the prediction function. In this paper, we propose a latent selection augmented naive (LSAN) Bayes classifier. By introducing a latent feature selection indicator, the GSI can be factorized into each local selection index (LSI). Using conjugate priors, the LSI for feature evaluation can be explicitly calculated. Then the feature subset selection models can be pruned by thresholding the LSIs, and the LSAN classifier can be achieved by the product of a small percentage of single feature model averages. The numerical results on some real datasets show that the proposed method outperforms the contrast feature weighting methods, and is very competitive if compared with some other commonly used classifiers such as SVM.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 65, 1 November 2015, Pages 109-115
نویسندگان
, , , ,