کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6941216 | 870325 | 2015 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Centroid prior topic model for multi-label classification
ترجمه فارسی عنوان
مدل موضوع سمبوتیک برای طبقه بندی چند لایحه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Supervised topic models such as labeled latent Dirichlet allocation (L-LDA) have attracted increased attention for multi-label classification. However, they lack considerations of the label frequency of the word (i.e., the number of labels containing the word), which is crucial for classification. To address this problem, we investigate the L-LDA model and then propose an extension, namely centroid prior topic model (CTPM). Class-feature-centroid (CFC) suggests a discriminative label-word vector that takes the label frequency of the word into account. CPTM uses this CFC vector as prior for label-word distributions. Extensive experiments on the Yahoo! dataset have been conducted to evaluate our algorithm. The experimental results demonstrate that CPTM outperforms the existing multi-label classification algorithms on AUC, Macro-F1 and Micro-F1.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 62, 1 September 2015, Pages 8-13
Journal: Pattern Recognition Letters - Volume 62, 1 September 2015, Pages 8-13
نویسندگان
Ximing Li, Jihong Ouyang, Xiaotang Zhou,